HomeLearning Tools

Top Five STEM Learning Tools Wishlist

Top Five STEM Learning Tools Wishlist
Like Tweet Pin it Share Share Email

top five stem learning tools

One of my greatest mentors in STEM told me a learning tools story soon after we met. He told me about his first teaching position, and one of his own mentors. The head of his department took him into the storage room, and showed him a set of 30 Microscopes. When my mentor said “How did you get all these?” his mentor replied “One or two at a time over the course of a 20 year career”.

Education is a marathon, not a sprint, don’t be afraid to take your time. The learning tools below are fantastic! They are also expensive, and if you read this post not necessary for a strong STEM lesson.

Below is a “Wishlist” of the top STEM learning tools as of the date of this posting. These are the tools to aim for when you ask for extra money, or run a Donors Choose Campaign. If you are exceptionally lucky, and get a lot of funding to start or improve a STEM program you can get several at once. However, if you didn’t win the funding lottery try to buy a little each year.

Some of what I mention below I currently use in my classroom, some I have plans to get in the future, and still others are “dream” tools. Regardless of whether I have it now, am working towards getting it, or simply wish for it, I have a plan for how it will be used. As I mentioned in another article Content Drives Technology.

1)  3D Printer

A 3D printer is hands down the best STEM tool ever invented. It allows educators to customize their curriculum by adding design, and engineering components seamlessly. Almost regardless of the lesson you are teaching, you can integrate 3D printing technology seamlessly. In this blog I will be detailing my own lessons that utilize 3D printing, and design to give you inspiration.

Just check under 3D Printing Lessons (As of this post I haven’t added any yet, but plan on it within the next several days). Depending on your specific needs, skills, and budget these can be purchased for anywhere form $500.00 TO $5,000.00 (or more) so, make sure you research 3D printers very well before buying. I will post some articles about 3D printers, and specifically the ones I have used under the category Product Evaluations (again, I haven’t posted any yet).

2) Lego Mindstorms Ev3

Though there are several platforms available in the marketplace I recommend this one for two reasons. First, it’s the only one I have personal experience with. Second, they allow for data collection, and analysis  with their education version. Though other platforms are similar in that you can program them with a block based language, and have click together hardware for building, I haven’t seen any other that come native with data tools. Lego is also the oldest, and as such there are a ton more resources available than I have seen for other robotics platforms. I use them to teach intro programming, intro mechanical engineering, and advanced programming.

AS the blog progresses I will be posting my lessons, as well as the resources I have used to the blog eventually under the Ev3 Lessons category, but haven’t yet. There will also be posts on here about how to use Ev3 because it can be a bit daunting at first. It is also important to note that you don’t need to shoot for the moon right away. Try starting out your purchasing with an idea of a 4 to 1 ratio of students to kits, you can work over time to reduce that to 2 to 1, but I wouldn’t go down to 1 to 1 with grade 5 and 6 which is where my robotics program is offered. Core kits are around $400.00, and Expansion Kits are around $100.00 each.

3) Raspberry Pi

These little computers can do so much for your STEM curriculum. Not only can you teach coding, physical programming, Linux, and circuitry, but you can use the Pi itself for a wide variety of design tasks. I have seen them used as a controller  for everything from weather stations to cafeteria signage, web servers, and even Minecraft Servers. Really, anything that requires some manner of electronic control can use a Pi as its brain. It is also a fantastic next step after getting your students comfortable with block based programming like the programming found in Lego Mindstorms Ev3, App Inventor 2, or Scratch.

I will be posting lessons for this under the Rapsberry Pi Lessons category, but haven’t yet. The big advantage to using the Pi is that the computer itself is under $40.00. You will need keyboards, monitors, mice, and peripherals, but with a lot of these extras can be found in storage closets in most public schools.

4) Andriod Tablets/Smart Phones

I love this tool for many reasons. The first, and best reason is MIT App Inventor 2. This tool alone (which is free) allows your students to be able to apply their school work directly to their lives by making fully functioning Android Apps. The most common question I get from students in my school since I started has been “Mr. T, can you show me how to make Apps?”. After discovering MIT App Inventor 2 I can finally tell them that I can. App Inventor 2 is so amazing that there are even a whole curriculum worth of video tutorials that teach you (and your students) how to use it. Since it’s free there are also a TON of online resources for project ideas, and help using it.

As if that weren’t enough of a reason I have also been using tablets in my classroom to document my students work. Again, I will go into exactly how I have done this in a later post, but haven’t gotten to it yet. Android tablets seem to start at around $100.00 if you can’t get phones or tablets donated.

5) LASER Cutter

This is the only STEM learning tool listed in this article that I don’t currently have in my classroom. I list it here because it it almost as amazing as a 3D printer, and if you can combine the two you can do just about anything. These also seem to start at about $5,000.00 as of the time of this writing.

LASER cutters are computer controlled, and are used to cut flat objects. Depending on the specifications of the machine you have they can cut anything from cardboard to wood, metal, and plastic. I like them because they are a natural compliment to my 3D printer.

 

I hope you have found the above list useful in your purchase planning. If you have other ideas of fantastic STEM learning tools, or how you use them please feel free to pop on over to the Contact page, and let me know!